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SUMMARY

The saturated equilibrium expansion approximation for two~phase flow
often involves ideal-gas and latent-heat assumptions to simplify the solu-
tion procedure. This approach is well documented by Wegener and Mack and works
best at low pressures approaching the triple point, for which deviations from
ideal-gas behavior are small. A thermodynamic expression for liquid mass frac-
tion that is decoupled from the equations of fluid mechanics is used in this
paper to compare the effects of the various assumptions on nitrogen-gas satu-
rated equilibrium expansion flow starting at 8.81 atm, 2.99 atm, and 0.45 atm,
which are conditions representative of transonic cryogenic wind tunnels. For
the highest-pressure case, the entire set of ideal-gas and latent-heat assump-
tions are shown to be in error by 62 percent for the values of heat capacity
and latent heat used in this paper. This error appears to be chiefly the
result of the inaccuracy of the ideal-gas expression for approximating entropy
in nitrogen gas. An approximation of the exact, real-gas expression is also
developed by using a constant, two-phase isentropic expansion coefficient
which results in an error of only 2 percent for the high-pressure case.

INTRODUCTION

When condensation occurs in a wind tunnel, the resulting two-phase flow
will usually cease to simulate the flow of an ideal diatomic gas, as explained
in reference 1. Often it is of interest to be able to predict the approximate
magnitude of these effects, and a useful analytic procedure to do this is to
assume the flow undergoes a saturated equilibrium expansion in which the pres-
sure and temperature of the two-phase mixture isentropically follow the vapor-
pressure curve. Developed more fully in reference 1, this analytic procedure
is only an idealization of actual condensing flow, although it does closely
approximate the physical situation when there are many preexisting seed parti-
cles in the flow.

The saturated equilibrium expansion procedure can be solved exactly from
a thermodynamic viewpoint, but it is usually solved approximately by using
several thermodynamic assumptions which simplify the solution procedure to a
large extent. The simplifying assumptions are described by Wegener and Mack
in reference 1 and include representing the gas by the ideal-gas equations and
treating latent heat as a constant. These assumptions are very adequate for
the original application of the saturated equilibrium expansion procedure to
hypersonic wind tunnels, where the flow usually becomes saturated at pressures
one or two orders of magnitude below 1 atm. At low pressures, these approxi-
mations model the gas satisfactorily; however, as pressures increase, these
assumptions will usually become more inaccurate.

A high-pressure application for the saturated equilibrium expansion prob-
lem has arisen with the development of nitrogen-gas, transonic cryogenic wind
tunnels, which typically operate at reservoir pressures of 5 to 10 atm.



(See ref. 2.) Since under some test conditions the flow may become saturated at
pressures of 5 atm or greater, an assessment of the accuracy of the ideal-gas
approximations as used in the Wegener and Mack (ref. 1) development seems pru-
dent for this higher pressure application.

Based on preliminary comparisons between the full (exact) thermodynamic
analysis of nitrogen and the Wegener and Mack approach, it appears that the
liquid mass fraction is the variable most sensitive to differences in approach.
Consequently, a simple real-gas solution is developed and then manipulated to
test the impact on predicted liquid mass fractions of the various assumptions
either singly or in combination to give some understanding of the significance
of the different assumptions that are involved in the Wegener and Mack develop~
ment. A total of 12 approximate formulations are compared with the exact solu-
tions for 3 different isentropes intersecting the nitrogen vapor-pressure curve
at (120.0 K, 8.81 atm), (88.0 K, 2.99 atm), and (71.2 K, 0.45 atm). Of course,
the complete set of assumptions used by Wegener and Mack is shown as one of the
formulations. A particularly interesting comparison is found for an approxima-
tion that uses a constant two-phase isentropic expansion coefficient.

The section of this report entitled "Exact Models" contains a review of the
necessary thermodynamics to derive the exact, real-gas expression for mass frac-
tion of liquid and also contains details of the manipulation of the exact form
into equivalent forms that will be used to derive the approximate expressions in
the section "Approximate Models."

SYMBOLS
Cp heat capacity, J/kg+K
E generalized extensive two-phase property
e specific value of BE, ;
g liquid mass fraction, defined in equation (2)
Ar latent heat, J/kg
h specific enthalpy, J/kg
k two-phase isentropic-expansion coefficient, defined in equation (15)
kp assumed constant value of k fitted exactly at saturated-vapor and
final states of an isentropic expansion
m mass, kg
P pressure, atm (1 atm = 101.3 kPa)
R nitrogen specific gas constant, J/kg°K



s specific entropy, J/kg°*K

T temperature, K

v specific volume, m3/kg

Subscripts:

c at point ¢, saturated-vapor state on an isentrope
F at point F, conditions at end of expansion

G at point G, saturated-vapor state

i index of model numbers, 0, 1, 2, . . ., 12

L at point L, saturated-liquid state

fe) at point o, reservoir conditions

P denotes conditions at constant pressure

r denotes reference conditions at a temperature 4 K below

conditions at c
s denotes conditions at a constant entropy
Superscripts:

4
' denotes —

dar
- mean value

EXACT MODEL

An exact solution, or model, for liquid mass fraction is derived and manip-
ulated into several equivalent exact forms. Before the exact model is derived,
however, a review of the basic thermodynamics is given, starting with the
sketches in figures 1 and 2.

Figure 1 illustrates, in a T,s diagram, an isentropic expansion s = sg
emanating from a reservoir at To,Po, located in the one-phase superheat region.
The isentrope contacts the boundary of the two-phase region at the point c where
the liquid mass fraction g 1is zero. The expansion terminates at the final
two-phase state F with 0 < gp < 1.

In figure 2, the entire two-phase region collapses into the single curve
p = pP(T) which is the saturated vapor-pressure curve. This is true because
the two-phase isotherms in s,T,p space are parallel straight lines which
project as points in the p,T plane. Thus, the distinct two-phase points L, F,
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and G of figure 1 project as the single point L,F,G of figure 2. Therefore,
the isentrope ocF of figure 1 has two branches in figure 2, oc and cF,
and the two-phase segment CF coincides with the vapor-pressure curve.

For a two-phase mixture of mass m a generalized, extensive-property
symbol E may be used for any of the following: enthalpy, entropy, internal
energy, Gibbs function, and Helmholtz function. The respective mixture specific
values e = E/m are then obtained from

e(g,T) = eg(T) - gleg(T) - ep(T)] (1)

This equation gives the specific value of any of the previously named extensive
properties at any state defined by the pair of values g and T, provided the
saturation values er(T) and eg(T) are known at each temperature, as is
usually the case. The liquid mass fraction g is defined for the two-phase

region as

my,/m (2)

(Te]
]

Therefore,

1 (3)

o
A

[Te]
A

As seen in figure 1, the saturated-vapor curve g = 0 1is one branch of the
boundary between the one-phase superheat region and the two-phase region.
Similarly, the saturated-liquid curve g =1 £forms the other branch of the
boundary which separates the one-phase liquid region from the two-phase region.
The two branches of the boundary curves are joined smoothly at the critical
point, from which other members of the constant g curves emanate into the
two-phase region as sketched in the figure. All of the g = c¢ family of
curves collapse into the single vapor-pressure curve p = p(T) of figure 2.

In the condensing portion of the isentrope s = so, equation (1) can be
used to give the liquid mass fraction by substituting s for e to give

90 = T (4)
SG - Sy,

where the subscript 0 denotes any one of the equivalent exact forms. The sub-
script 0 also adds emphasis to the fact that no assumptions beyond the common
one of constant entropy are used in the exact model.




A first equivalent form is obtained from equation (4) by adding and sub-
tracting so in the denominator. This results in

G — Sc¢
g9 = - (5)
SG = Sg *+ S¢g - SL

Even though only equivalent forms of the exact liquid mass fraction are

derived in this section, it is nevertheless noted at this point that gg in
equation (5) is now in a form in which the effect of the introduction of an
ideal-gas entropy change for the saturated-vapor entropy difference sg - sqo

is readily studied. In this case s, would be obtained from appropriate
thermodynamic tables at the arbitrarily fixed saturated-vapor state ¢ and sp,
would be read as the saturated-liquid value at successively lower temperatures

from the same tables. In this way the effect of the single assumption could be
isolated.

Additional exact forms of gg are obtained through the use of thermo-
dynamic identities for the local latent heat AH(T). These are

AH(T) = hg(T) - hp(T) (6)
AH(T) = Tlsg(T) ~ sp(T)] (7)
AH(T) = Tp'(T) [vg(T) = v (T)] (8)

where p'(T) 1is the slope of the vapor-pressure curve at temperature T. Equa-
tion (8) is known as the Clausius-Clapeyron equation. By equating the right
sides of equations (7) and (8) and substituting for sg - s in equation (4),
another equivalent form for the exact liquid mass fraction is given as

SG - Sc (9)
go D e——————
(vg ~ vp)p’

The final equivalent form for gp comes from substituting equation (8)
into equation (9) for vg - vy, to give

T(sg - S¢)

- 10
90 AH(T) (10

For nitrogen, the right sides of all of the equivalent forms for gy
{(egs. (4), (5), (9), and (10)) can be computed by using the saturation tables
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found in reference 3. Of course, similar tables are available for computing
these quantities for other gases as well.

APPROXIMATE MODELS

Different approximations can now be substituted into the exact expressions
for gg to determine what influences the approximations have on the predicted
mass fraction of condensed liquid. 1In all, 12 different approximate expressions
are derived by using either one or more of the following assumptions: (1) the
specific volume of the liquid is negligible compared to the specific volume of
the gas, (2) the entropy of the gas can be approximated by that of an ideal gas,
(3) the real gas can be represented by an ideal-gas equation of state, (4) the
latent heat at a temperature T can be approximated by a value equal to the
average of the latent heat at T and the latent heat at T,, (5) the two-phase
isentropic flow can be approximated by a two~phase, constant-valued expansion
coefficient, and (6) the latent heat can be treated as a constant. The assump-
tions are summarized in table 1 for easy reference.

TABLE 1.- BASIC ASSUMPTIONS

Number Assumétion '
1 vy, << vg
2 SG ~ S¢ = (5g - Sc)ideal gas
3 PVg = RT
4 AH(T,T.) = %fAH(T) + AH(T,) ]
5 k = kg
6 AH = constant

The liquid mass fractions g calculated with these assumptions are desig-
nated by subscripts 17 to 12. The value of specific heat at constant pressure
C used in the calculations is equal to the zero~pressure value of 1039 J/kg°K
unless otherwise noted. The impact on the calculations for liquid mass fraction
of using the value of Cp corresponding to finite pressure and low temperature
is discussed in the appendix.

One-Assumption Models
For the one-assumption models the subscript of g corresponds to the
numbered assumptions from table 1. Thus, the first one-assumption model for

the liquid mass fraction is
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g1 = (sg - sg)/vgp' (1)

and is obtained by using assumption 1 with equation (9). After the approxima-
tion is made, all of the quantities in the right side are obtained from the
vapor-pressure equation and the saturation tables of reference 3. This proce-
dure will apply uniformly to all subsequent approximations also.

When assumption 2 is applied to equation (5), the result is

T P
Cp In — - R 1ln —
Te Pc
(12)

g2 =
T p

Cp In — = R ln — + sg - s,
Te Pc

Assumption 3 applied to equation (9) gives

SGg — S¢
(13)

g3 = -——
,BE - v )P'
7

In the next model the local latent heat AH(TL_ in equation (10) is arbi-
trarily replaced by its local arithmetic average AH(T,TC) to establish a
degree of sensitivity to latent heat (assumption 4) on a one-assumption level
before encountering subsequent integral situations for which the approximations
require some form of averaging. Thus, equation (10) is simply replaced by

T(sg - S¢) a4

94 7 (T, 10)

The last one-assumption model to be considered assumes a constant
isentropic-expansion coefficient k. Although this model does not enter the
development of the Wegener and Mack (ref. 1) procedure, it does present a
simple alternate way to approach simplifying the expressions for liquid mass

fraction. From the general definition of Kk,

3
K = - ‘_’<_P> (15)
P\dv/g



Those thermodynamic states on an isentrope can be represented by the differen-
tial form

dp dv
= (16)
P

where k is variable. For some mean value Xk, integration between Pcr Ve and
the local coordinates p,v gives

p 1/k
(o
= Val — 17
v c(p ) (17)
or
Pc
1n —
k = P (18)
v
1n —
Ve

which shows that k is a local average which can vary as p and v vary
on the isentrope. For a closed interval on the isentrope with end states
of ¢ and F, equation (18) yields a value of Kk, now designated as kg,

equal to

Pc
_— PF (19)

For small variations in k, the local average k 1in equation (17) is replaced
by kp and consequently gives an approximation for the isentrope in the p,v

plane as

po\ /K
v =g = (20)



This will satisfy the end states po,ve and pp,vyp exactly. After state c
is specified by selecting T, state F is obtained as follows. Substitution
of v for e 1in equation (1) results in

v =vg - g(vg = v) (21)

which holds for any two-phase state. Elimination of g between this equation
and equation (4) gives the specific volume on the isentrope as

5¢ =~ S¢
v =vg - G(VG - VL) (22)

In this equation s, is the entropy of the saturated vapor which is fixed by
the selection of T,. All of the remaining quantities are saturation quantities
which can be treated as functions of temperature; hence

SGg — S¢
Vp = vg - ———(vg - VL) (23)
c - =L

where equation (23) is evaluated at Tp. The definition of EF in equa-
tion (19) is completed by taking pp as the pressure on the vapor-pressure
curve at Tp.

After eliminating v from equations (20) and (21), the result is
rearranged to give the approximate model for the liquid mass fraction as

p
gs = (24)

VG - VL

(pc>1/kF

In this equation Vgr Vs and p are read fram the thermodynamic tables at
any temperature.

Two~Assumption Models

The two~assumption models are derived by adding an additional assumption
to some of the one-assumption models. With more than one assumption occurring
within a model, it is no longer possible to have the subscript on g simulta-
neously identify both the model number and the assumption number. Hence, the



notation is extended by writing the assumption numbers in parentheses after
gjr where i is the model number. Imposing the additional assumption 3 on
equation (11) gives

N

pP(sg - s¢)
P'RT

(25)

g6(1,3) =

That is, the two-assumption model gg 1is constructed by using assumptions 1
and 3 from table 1. When assumption 2 is incorporated into equation (11), the
result is

T P
Cp In — -~ R 1ln —
Te Pc
g7(1,2) = (26)
P'vg

Equation (13) with assumption 2 is

T P
Te Pc
RT

Finally, the combination of assumption 2 and equation (14) yields

T P
T Cp lIn— - R 1n —
Te Pc
dg(4,2) = — (28)
9 ! AH(TITc)

Multiple~Assumption Models

A three-assumption model is obtained when assumption 3 is added to equa-
tion (26) to give
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Pc

910(1,2,3) = — (29)

T p
P Cp in — - R 1n —
Te

The same result can be obtained by adding assumption 2 to equation (25), or by
adding assumption 1 to equation (27). At this point it is again noted that the
right sides of all g; for i=0,1, . . ., 10 are computed from Jacobsen's
tables of thermodynamic properties (ref. 3). This means that p and p' are
the actual values of the pressure and its derivative along the vapor-pressure
curve. A new approximation is now incorporated for the vapor-pressure curve
that necessitates the introduction of the local average latent heat in a formal
way in, contrast to the arbitrary manner in which it was previously used. From
equation (8) and assumptions 1 and 3,

' AH(T
E’ _ (2) (30)
RT

Next, the law of the mean can be used when integrating the right side of equa-
tion (30) to remove an exact mean value of latent heg& <AH(T)> from the inte-
gral. This mean value can then be approximated by AH(T,TC) of assumption 4.
Consequently, by approximating this mean value with assumption 4, integration of
equation (30) results in

P — 1 1
-R 1n — = AH(T,TC)<— - —> (37)
Pc T To

The local average latent heat will again be referred to as assumption 4.
Therefore,

911 1,2,3,4) =

1n
AH(T) Te AH(T)

CpT T E’I(T,TC)< T >
—_—(1 - (32)
TC

where AH(T) is the actual local value of latent heat and Zﬁ(T,Tc) is defined
by assumption 4.

Finally, incorporating assumption 6 into equation (32), no distinction
is made in the various latent heats. That is, only one value of latent heat,

AH ~ AH(T) ~ BH(T,Tp) (33)

n



is used. With this, equation (32) reduces to equation (4.60) of reference 1,
which has been previously referred to as the Wegener and Mack model. Therefore,

il 1 z <1 T > (34)
912 = — 1n — + -
AH T To

In reference 1, this has been derived from a fluid mechanics approach rather
than the thermodynamics approach used here. The present approach emphasizes
the fact that the liquid-mass-fraction calculation can be decoupled from the
fluid mechanics. The thermodynamic state, which includes g, is the same at
some temperature T (less than Tg) for two different superheat-reservoir
choices on the same isentrope even though the velocities at temperature T
are different for the two choices.

It is interesting to note that equation (34) uses the maximum number of
assumptions and minimizes dependence on tables of thermodynamic properties.
For example, CP was normally taken to be the ideal-gas value of 1039 J/kg°K
and, after arbitrarily selecting T, and Tp, latent heat was taken to be

1
AH = -Z-[AH(TC) + AH(Tp) ] (35)

and calculated from the tables in reference 3. Once these numbers are inserted
into equation (34), gj2 becomes an explicit, simple function of temperature.

RESULTS AND DISCUSSION

The computational results for the liquid mass fractions associated with
three saturated equilibrium expansions for nitrogen are shown in figures 3
to 11. Figures 3 to 5 refer to an isentropic expansion from T, = 102.0 K
and p, = 8.81 atm to Tp = 94.8 K and pp = 5.26 atm. The next expansion
is shown in figures 6 to 8 with To = 88.0 K, pc = 2.99 atm, Tp = 80.8 K,
and pp = 1.47 atm. The final expansion corresponds to figures 9 to 11 with
Tc = 1.2 K, pc = 0.45 atm, Tp = 64.0 K, and pp = 0.14 atm. For reference,
the critical and triple-point temperatures are 126.2 K and 63.1 K, respectively.
For any one expansion, each figure contains the zero-assumption model plotted
as gg. In addition, the first figure in each expansion shows the plots of
the one-assumption models; the second figure shows the two-assumption models;
and the third figure shows the multiple-assumption models.

For figures 3 to 11 all of the curves intersect at the point T = T,
and g = 0, and generally they form an approximately linear pencil of curves
emanating from the point of intersection. With the exception of the EF
curve (model 5), the curves do not intersect after the common (T,,0) point, and
like-numbered curves maintain the same relative position for each of the three
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isentropic expansions. The overall width of the pencil fan measured at the
respective Tp values is broadest for the high-temperature and high-pressure
expansion, decreases for the midrange temperature and pressure expansion, and

is the narrowest for the low-temperature and low-pressure expansion. The
decreasing fan width associated with decreasing T, values reflects the general
fact that the imposed assumptions 1, 2, 3, 4, and 6 are all more accurate at low
temperatures and pressures away from the critical point. The exception to this
is the kg curve (assumption 5), which has its poorest performance in the low-
temperature expansion and its best performance in the middle-temperature expan-
sion. (Assumption 5 is developed as an approximation of real-gas thermodynamics
in contrast to the other assumptions that are generally of an ideal-gas, or
zZero-pressure, nature.)

The percent deviations of the predicted values of g from the exact model
are presented in table 2 for each approximate model. The reference temperature
TABLE 2.- PERCENT DEVIATIONS OF APPROXIMATE LIQUID MASS

FRACTIONS g; FROM EXACT LIQUID MASS FRACTION g

Percent deviation of g; from gg
for T, of -
Model B - (a) -

98.0 K 84.0 K 67.2 K

1 -4.49(3) -1.48(6) 0.00(9)
2 -35.09(3) ~16.02(6) ~3.82(9)
3 =17.15(3) -7.42(6) -1.53(9)
4 2.64(3) 1.78(6) 1.27(9)
5 1.85(3) ~.30(6) -4.33(9)
6 -19.79(4) ~8.31(7) -1.53(10)
7 ~38.79(4) -17.80(7) -4.07(10)
8 ~46.97(4) -22.85(7) -5.60(10)
9 -34.30(4) -15.13(7) -2.80(10)
10 -48.81(5) ~23.44(8) ~5.60(11)
11 -64.38(5) ~30.86(8) ~-7.38(11)
12 -62.27(5) ~29.08(8) ~5.85(11)

ANumbers in parentheses refer to figure numbers.

T, for each of the isentropes is 4 K below the value of T,. The reason for
choosing a temperature located approximately halfway between T, and Ty for
any run is that the kg curve is constructed to produce no deviation at the
end states. Its maximum error occurs at some temperature between T, and Tg,
which is roughly approximated by T,. There are three values of T, listed in
table 2, one for each set of values for T, and Tp. The percent deviation is
defined as 100(gj ~- d9)/gg. For quick reference to the curves, the model num-—
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ber is given in the first column and the appropriate figure number is given in
parentheses after the deviation.

The performance of the different assumptions is indicated in table 2.
As expected, their performance at the high-pressure expansion (T, = 98.0 K) is
generally the poorest. Of the one-assumption models (models 1 to 5) the worst
performance is by model 2 and the next to the worst is by model 3. Model 2
is  the assumption that the entropy of gaseous nitrogen can be represented by
an ideal-gas model and model 3 is the assumption that gaseous nitrogen can
be represented by an ideal equation of state. Of the two-assumption models
(models 6 to 9), all incorporate the entropy assumption and show poor perform-
ance. The poorest of these, model 8, incorporates both the entropy and the
ideal equation of state assumptions. Of the multiple-assumption models, all
perform poorly and all incorporate the ideal form of the entropy assumption.
The entropy assumption seems to consistently be an inaccurate assumption that
leads to errors, and the reasons for its inaccuracies are discussed in the

appendix.

With the exception of model 5, the performance of the models improves
markedly at the lower temperature and pressure expansions. Model 12, which
corresponds to the assumptions in the Wegener and Mack procedure (ref. 1),
departs from the exact model gy by about -62, -29, and -6 percent for the
expansions starting at 8.81, 2.99, and 0.45 atm, respectively. At the lowest-
pressure case model 12 does satisfactorily, which is good performance consid-
ering its original application was for much lower pressures for which agreement
would be even better. It is recommended that model 12 not be used in cryogenic~
nitrogen wind tunnels if saturation is expected at pressures over 0.5 atm and
accuracy is required.

For application to other test gases it is recommended to repeat the proce-
dure described herein to examine the various assumptions and their performance in
predicting liquid mass fractions. BAn additional concern with other test gases
is that the liquid mass fraction may not necessarily be the most sensitive dif-
ference between an exact solution and a procedure such as that of Wegener and
Mack. For example, differences in liquid mass fraction may be less than dif-
ferences in static pressure or temperature ratios at a given Mach number in
other gases. Thus, the sensitivity to liquid mass fraction should be verified
before relying solely on the liguid mass fraction test to determine whether or
not the ideal approximations of Wegener and Mack can adequately describe the
saturated equilibrium expansion problem.

CONCLUSIONS

The isentropic two-phase saturated equilibrium expansion problem is usually
solved by using several simplifying approximations dealing with either ideal-gas
or latent-heat assumptions, as in the formulation of Wegener and Mack (ref. 1).
These assumptions are intended for low-pressure applications and begin to break
down for the prediction of liquid mass fraction as the pressure at which the
isentrope meets the vapor-pressure curve increases. For intersection pressures
of 0.45, 2.99, and 8.81 atm in nitrogen, the differences between the exact,
real-gas value of liquid mass fraction and the value predicted by the Wegener
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and Mack formulation are, respectively, about -6, -29, and -62 percent. The
assumption in the Wegener and Mack formulation that appears to generate the
largest deviations for nitrogen is that of assuming the ideal-gas form for
entropy of the gas phase. For nitrogen gas it is recommended that the Wegener
and Mack formulation for solving saturated equilibrium expansions be restricted
to pressures less than 0.5 atm. For pressures greater than 0.5 atm, either a
full real-gas analysis or a procedure such as that with a constant isentropic-
expansion coefficient should be used.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

April 23, 1980
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APPENDIX

DISCUSSION OF THE IDEAL-GAS ENTROPY
ASSUMPTION FOR NITROGEN

Attention was first directed to the assumption of the ideal-gas form of
entropy after an attempt was made to improve the agreement between the multiple-
assumption models (numbers 10 to 12) and the exact model gg for the high-
pressure example shown in figure 5. Since all the calculations used in the
approximate models in table 2 and figures 3 to 11 used the zero-pressure, ideal
value of Cp (1039 J/kg*K), it was thought that using an average of the actual
values of C along the expansion would lead to better agreement between gg
and models 10, 11, and 12. As seen in figure 12, this did not occur. The
agreement is noticeably worse with the more accurate value of C than with the
zero-pressure value used in figure 5. As it has turned out, the problem is not
just with Cp but with the entire ideal-gas approximation for sg,p - sg. (In
this appendix the notation sg,p is used to denote the saturated-vapor entropy
at the temperature Tp = 94.8 K. The use of the single subscript G is
retained for variable saturated-~vapor states.)

Consider the following methods for calculating the saturated-vapor entropy
difference sg,p - Sc for the high-temperature expansion from To = 102.0 K to
Tp = 94.8 K. Since both states in the entropy difference are single-phase gas
states, the general expression for ds can be written without any assumptions

as

dr ov dp

ds = C — - p|— (36)
Yo aT p,G P

Integration from c¢ to the saturated-vapor state at Tp along the saturated-
vapor curve gives

<C 1 o (3V> 1 o (37)
sg,F ~ Sc = <Cp,¢>In — - (Bl n —
' b Te an,G Pe

Equation (37) is exact when the bracketed terms represent the value of the

terms from the mean-value integral theorem of calculus. An arbitrary approxima-
tion or averaging for the bracketed terms can lead to deviations in the result-

ing entropy calculations. Several methods of computing the entropy difference,

including the exact method, are now utilized to illustrate the effect of various

approximations.

First, by assuming the ideal-gas equation of state pv = RT, then
p(3v/8T)p'G = R, Substitution into equation (37) results in
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APPENDIX

Tr Pp
(sg,F - Sc)ideal gas = <Cp,g> In — - R 1ln — (38)
Te Pc

This form still leaves open the manner of approximating <C ,G>+ Ordinarily the
zero-pressure value of Cp g 1is incorporated with the ideag—gas concept. This
value varies slowly in the present temperature range with an excellent approx-
imation given by the wvalue of 1039 J/kg-K, which is the value used in fig-

ures 3 to 11. The arithmetic mean of C ,G at saturated pressures, given by
[Cp,G(Tc) +C ,G(TF)]/Z' has the value 1318 J/kg*K and is used in the curves of
figure 12. These figures indicate that both the ideal and arithmetic-mean
values of C , G in conjunction with equations (38) and (5) underestimate the
liquid mass ?raction with the arithmetic mean of the actual values at pres—
sure, giving worse results. Specifically in terms of entropy differences, the
exact solution calculates sg,p - Sc¢ as equal to 115.8 J/kg*K for the high-
temperature expansion, equation (38) with the ideal values of C ,G Ccalculates
SG,F - S¢ as 77.1 J/kg*K and equation (38) with the arithmetic-mean values of
Cp calculates sg,p - Sc as 49.3 J/kg°K.

Consequently, correcting Cp,G to a more accurate value in equation (38)
leads to worse agreement and this draws attention back to equations (37) and
(38). In going from equation (37) to equation (38), the substitution involved
assumes an ideal-gas equation of state to calculate p(av/aT)p,G = R, where
R = 296.8 J/kg*K. This substitution actually represents a large source of error
because the arithmetic-mean value of p(dv/93T) ,G ¢evaluated at the end points
of the high-temperature expansion is actually 531.2 J/kg*K. In fact, calculat-
ing sg,p - S¢ from equation (37) with the arithmetic-mean values of both Cp g
and p(év/aT) ,G leads to a good value of 118.6 J/kg-K compared to the actuag
value of 115.8 J/kg*K, and would lead to excellent agreement for the predicted
values of liquid mass fraction.

From this analysis, both bracketed terms in equation (37) are very impor-
tant. In fact it is the p(av/BT)p'G term that makes the ideal-gas entropy
equation inaccurate in representing real-nitrogen values of entropy. This
inaccuracy appears to be the primary reason why the equations in the analyses
for liquid mass fraction using the ideal expression for entropy did so poorly.
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